Products > RF ICs/Discretes > RF ICs > GaAs Amplifiers, Mixers, Switches > MGA-85563

MGA-85563

3V LNA, 12 to 17dBm Adjustable OIP3, 0.8-6GHz, SOT363 (SC-70)

MGA-85563 3-volt, Low Noise Amplifier for 0.8–6 GHz Applications

Data Sheet

Description

Avago's MGA-85563 is an easy-to-use GaAs RFIC amplifier that offers low noise figure and high gain from 0.8 to 6 GHz. Packaged in an ultraminiature SOT-363 package, it requires half the board space of a SOT-143 package.

The MGA-85563 features a minimum noise figure of 1.6 dB and associated gain of 18 dB at 1.9 GHz. The output is matched internally to 50Ω , and the input is partially matched, requiring only a single external inductor for optimal performance. The supply current can be adjusted using an external resistor, varying IP3 from +12 dBm to +17 dBm.

The circuit uses state-of-the-art PHEMT technology with proven reliability. On-chip bias circuitry allows operation from a single +3 V supply, while resistive feedback ensures stability (K > 1) over frequency and temperature.

Surface Mount Package SOT-363 (SC-70)

Pin Connections and Package Marking

Note:

Package marking provides orientation and identification; "x" is date code.

Equivalent Circuit

(Simplified)

Features

- Lead-free Option Available
- 1.6 dB minimum Noise Figure at 1.9 GHz
- Adjustable IP3 from +12 dBm to +17 dBm via External Resistor
- 18 dB Gain at 1.9 GHz
- Single 3 V Supply
- Unconditionally Stable

Applications

 Amplifier for Cellular, PCS, and Wireless LAN Applications

Attention: Observe precautions for handling electrostatic sensitive devices.

ESD Machine Model (Class A) ESD Human Body Model (Class 0) Refer to Avago Application Note A004R: Electrostatic Discharge Damage and Control.

พนก-ของขอ กอองเนเซ พนกแทนแท และแบรอ					
Symbol	Parameter	Units	Absolute Maximum ^[1]		
V _d , max	Maximum Device Voltage	V	5.5		
P _{in}	CW RF Input Power	dBm	+13		
T _{ch}	Channel Temperature	°C	150		
T _{STG}	Storage Temperature	°C	-65 to 150		

MGA-85563 Absolute Maximum Ratings

Thermal Resistance ^[2] :	
$\theta_{\rm ch \ to \ c} = 155^{\circ} {\rm C/W}$	

Notes:

1. Operation of this device above any one of these limits may cause permanent damage.

2. $T_C = 25^{\circ}C$ (T_C is defined to be the temperature at the package pins where contact is made to the circuit board).

Electrical Specifications,	$T_{c} = 25^{\circ}C, Z_{0} = 50 \Omega,$	$V_d = 3 V$, and using default o	f no external resistor at the R _{hias} pin

Symbol	Parameters and Test Conditions		Units	Min.	Тур.	Max.	Std. Dev. ^[3]
G _{test}	Gain in Test Circuit ^[1]	f = 2.0 GHz	dB	16	19		1.0
NF _{test}	Noise Figure in Test Circuit ^[1]	f = 2.0 GHz	dB		1.85	2.3	0.1
NF _{MIN}	Minimum Noise Figure (measured with ${\rm G}_{\rm opt}$ presented to the input and 50 Ω presented to the output)	f = 0.9 GHz f = 1.5 GHz f = 2.0 GHz f = 2.4 GHz	dB		1.6 1.6 1.6 1.6		0.1
		f = 4.0 GHz f = 5.0 GHz f = 6.0 GHz			1.6 1.6 1.6		
G _A	Associated Gain at NF _{MIN} (measured with G _{opt} presented to the input and 50 Ω presented to the output)	f = 0.9 GHz f = 1.5 GHz f = 2.0 GHz f = 2.4 GHz f = 4.0 GHz f = 5.0 GHz f = 6.0 GHz	dB		17.0 17.5 18.0 18.5 17.5 16.0 14.5		1.0
IP ₃	Third Order Intercept Point (measured with 50 Ω presented to the input and output)	f = 0.9 GHz f = 1.5 GHz f = 2.0 GHz f = 2.4 GHz f = 4.0 GHz f = 5.0 GHz f = 6.0 GHz	dBm		13 13 11.5 11.5 13 12.5 12		1.2
P _{1 dB}	Output Power at 1 dB Gain Compression (measured with 50 Ω presented to the input and output)	f = 0.9 GHz f = 1.5 GHz f = 2.0 GHz f = 2.4 GHz f = 4.0 GHz f = 5.0 GHz f = 6.0 GHz	dBm		0.8 0.9 0.9 1.0 1.4 1.3 1.2		1.1

MGA-85563 Electrical Specifications, continued, $T_c = 25^{\circ}C$, $Z_0 = 50 \Omega$, $V_d = 3 V$, and using default of no external resistor at the R_{bias} pin

Symbol	Parameters and Test Conditions		Units	Min.	Typ.	Max.	Std. Dev. ^[3]
VSWR _{in}	Input VSWR ^[2]				2.5:1		
VSWR _{out}	Output VSWR ^[2]				1.3:1		
ISOL	Isolation	f = 0.9 - 3.0 GHz	dB		37		0.6
		f = 3.0 - 6.0 GHz			30		
۱ _d	Device Current		mA		15	20	1.9

Notes:

1. Guaranteed specifications are 100% tested in the circuit of Figure 1.

2. Measured using the final test circuit shown below at f = 2 GHz.

3. Standard Deviation number is based on measurement of at least 500 parts from three non-consecutive wafer lots during the initial characterization of this product, and is intended to be used as an estimate for distribution of the typical specification.

MGA-85563 Final Test Circuit, $T_c = 25^{\circ}C$, $Z_0 = 50 \Omega$

Package Dimensions

Outline 63 (SOT-363/SC-70)

	DIMENSIONS (mm)			
SYMBOL	MIN.	MAX.		
E	1.15	1.35		
D	1.80	2.25		
HE	1.80	2.40		
Α	0.80	1.10		
A2	0.80	1.00		
A1	0.00	0.10		
Q1	0.10	0.40		
е	0.650 BCS			
b	0.15 0.30			
с	0.10 0.20			
I	0.10 0.30			

- NOTES: 1. All dimensions are in mm.
- 2. Dimensions are inclusive of plating.
- 3. Dimensions are exclusive of mold flash & metal burr.

Q1

- 4. All specifications comply to EIAJ SC70.
- An specifications comply to Environment.
 Die is facing up for mold and facing down for trim/form, ie: reverse trim/form.
- 6. Package surface to be mirror finish.

Part Number	No. of Devices	Container
MGA-85563-TR1	3000	7" Reel
MGA-85563-TR2	10000	13" Reel
MGA-85563-BLK	100	antistatic bag
MGA-85563-TR1G	3000	7" Reel
MGA-85563-TR2G	10000	13" Reel
MGA-85563-BLKG	100	antistatic bag

Part Number Ordering Information

Note: For lead-free option, the part number will have the character "G" at the end.